Nowadays, an Internet of Things (IoT) device consists of algorithms, datasets, and models. Due to good performance of deep learning methods, many devices integrated well-trained models in them. IoT empowers users to communicate and control physical devices to achieve vital information. However, these models are vulnerable to adversarial attacks, which largely bring potential risks to the normal application of deep learning methods. For instance, very little changes even one point in the IoT timeseries data could lead to unreliable or wrong decisions. Moreover, these changes could be deliberately generated by following an adversarial attack strategy................
Loading....